题目内容
设数列{an}的各项均为正数,前n项和为Sn,对于任意的n∈N+,an,Sn,a成等差数列,设数列{bn}的前n项和为Tn,且bn=,若对任意的实数x∈(1,e](e是自然对数的底)和任意正整数n,总有Tn<r(r∈N+).则r的最小值为________.
2
【解析】根据题意,对于任意n∈N+,总有an,Sn,a成等差数列,则对于n∈N*,总有2Sn=an+①
所以2Sn-1=an-1+ (n≥2)②
①-②得2an=an+-an-1-,即an+an-1=(an+an-1)(an-an-1)因为an,an-1均为正数,所以an-an-1=1(n≥2),
所以数列{an}是公差为1的等差数列,又n=1时,2S1=a1+a,解得a1=1,所以an=n,对于任意的实数x∈(1,e],有0<ln x<1,对于任意正整数n.总有bn=≤,所以Tn≤=,又对任意的实数x∈(1,e]和任意正整数n,总有Tn<r(r∈N+),所以r的最小值为2.
练习册系列答案
相关题目