题目内容
16.如图,面积为4的矩形ABCD中有一块阴影部分,若往矩形ABCD中随机投掷1000个点,落在矩形ABCD的非阴影部分中的点数为600个,则据此估计阴影部分的面积为( )A. | 1.2 | B. | 1.4 | C. | 1.6 | D. | 1.8 |
分析 根据若往矩形ABCD投掷1000个点,落在矩形ABCD的非阴影部分中的点数为600个可估计落在阴影部分的概率,而落在阴影部分的概率等于阴影部分的面积与矩形的面积比,从而可求出所求.
解答 解:根据几何概率的计算公式可得,向距形内随机投掷1000个点,落在矩形ABCD的非阴影部分中的点数为600个,则落在矩形ABCD的阴影部分中的点数为400个,
设阴影部分的面积为S,落在阴影部分为事件A,
∴落在阴影部分的概率P(A)=$\frac{400}{1000}=\frac{S}{4}$,解得S=1.6.
故选C.
点评 本题考查了几何概型,解答此题的关键在于明确测度比是面积比.对于几何概型常见的测度是长度之比,面积之比,体积之比,角度之比,要根据题意合理的判断和选择是哪一种测度进行求解.属于中档题.
练习册系列答案
相关题目
6.若角α的终边经过点A($\sqrt{3}$,a),且点A在双曲线$\frac{x^2}{3}-{y^2}$=1的渐近线上,则sinα=( )
A. | ±1 | B. | $±\frac{{\sqrt{2}}}{2}$ | C. | $±\frac{1}{2}$ | D. | $±\frac{{\sqrt{3}}}{2}$ |
1.已知双曲线C:x2-y2=2的一个焦点为F,则点F到C的一条渐近线的距离为( )
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 3 |