题目内容

12.已知P是抛物线y2=4x上的一个动点,则P到直线l1:4x-3y+6=0和l2:x+2=0的距离之和的最小值是(  )
A.1B.2C.3D.4

分析 x=-1是抛物线y2=4x的准线,则P到x+2=0的距离等于PF+1,抛物线y2=4x的焦点F(1,0)过P作4x-3y+6=0垂线,和抛物线的交点就是P,所以点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值就是F(1,0)到直线4x-3y+6=0距离,即可得出结论.

解答 解:∵x=-1是抛物线y2=4x的准线,
∴P到x+2=0的距离等于|PF|+1,
∵抛物线y2=4x的焦点F(1,0)
∴过P作4x-3y+6=0垂线,和抛物线的交点就是P,
∴点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值就是F(1,0)到直线4x-3y+6=0距离,
∴P到直线l1:4x-3y+6=0和l2:x+2=0的距离之和的最小值是$\frac{|4-0+6|}{\sqrt{16+9}}$+1=2+1=3.
故选:C.

点评 本题考查点到直线的距离公式的求法,是基础题.解题时要认真审题,注意抛物线的性质的灵活运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网