题目内容

精英家教网双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为(  )
A、
6
B、
3
C、
2
D、
3
3
分析:先在Rt△MF1F2中,利用∠MF1F2和F1F2求得MF1和MF2,进而根据双曲线的定义求得a,最后根据a和c求得离心率.
解答:解:如图在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c
MF1=
2c
cos30°
=
4
3
3
c
MF2=2c•tan30°=
2
3
3
c

2a=MF1-MF2=
4
3
3
c-
2
3
3
c=
2
3
3
c

e=
c
a
=
3

故选B.
点评:本题主要考查了双曲线的简单性质,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网