题目内容
6.已知log2a>log2b,则下列不等式一定成立的是( )A. | $\frac{1}{a}>\frac{1}{b}$ | B. | log2(a-b)>0 | C. | 2a-b<1 | D. | ${({\frac{1}{3}})^a}<{({\frac{1}{2}})^b}$ |
分析 由题意可得a>b>0,依次比较即可.
解答 解:∵log2a>log2b,∴a>b>0,
所以0<$\frac{1}{a}<\frac{1}{b}$,2a-b>20=1,故A、C不正确;
当a-b>1时,log2(a-b)>0,
当0<a-b≤1时,log2(a-b)≤0,故B不正确;
∵$(\frac{1}{3})^{a}<(\frac{1}{3})^{b}<(\frac{1}{2})^{b}$,∴选项D正确;
故选:D.
点评 本题考查函数的单调性,函数值的比较,属于中档题.
练习册系列答案
相关题目
13.已知5sinα+2cosα=0,则$\sqrt{(1-si{n}^{2}α)(1-co{s}^{2}α)}$的值为( )
A. | $\frac{10}{29}$ | B. | $\frac{\sqrt{10}}{29}$ | C. | $\frac{20}{29}$ | D. | ±$\frac{10}{29}$ |
14.复数$\frac{a+i}{1-i}$为纯虚数,则它的共轭复数是( )
A. | 2i | B. | -2i | C. | i | D. | -i |
1.已知函数f(x)=(x-a)(x-b),其中a<b则下列关于f(x)的说法正确的是( )
A. | 若函数f(x)在区间(m,n)内只有一个零点,则必有f(m)f(n)<0 | |
B. | 若函数f(x)在区间(m,n)内有两个零点,则必有f(m)f(n)<0 | |
C. | 若函数y=f(x)-t(t>0)在R上有两个零点α,β(α<β),则必有α<a<b<β | |
D. | 若函数y=f(x)-t在R上有两个零点α,β(α<β),则存在实数t,使得α+β>a+b |
11.称d($\overrightarrow{a},\overrightarrow{b}$)=|$\overrightarrow{a}$-$\overrightarrow{b}$|为两个向量$\overrightarrow{a}$、$\overrightarrow{b}$间的“距离”.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足:①|$\overrightarrow{b}$|=1;②$\overrightarrow{a}$≠$\overrightarrow{b}$;③对任意的t∈R,恒有d($\overrightarrow{a}$,t$\overrightarrow{b}$)≥d($\overrightarrow{a}$,$\overrightarrow{b}$),则( )
A. | $\overrightarrow{a}⊥\overrightarrow{b}$ | B. | $\overrightarrow{a}$⊥($\overrightarrow{a}-\overrightarrow{b}$) | C. | $\overrightarrow{b}$⊥($\overrightarrow{a}-\overrightarrow{b}$) | D. | ($\overrightarrow{a}+\overrightarrow{b}$)⊥($\overrightarrow{a}-\overrightarrow{b}$) |