题目内容
16.已知△ABC的内角A,B,C的对边分别为a,b,c,若b=2且a=2cosC+csinB,则△ABC的面积的最大值为$\sqrt{2}$+1.分析 a=bcosC+ccosB,又a=2cosC+csinB,b=2,可得B.由余弦定理可得:b2=a2+c2-2accosB,利用基本不等式的性质可得:ac,即可得出三角形面积的最大值.
解答 解:∵a=bcosC+ccosB,又a=2cosC+csinB,b=2,
∴cosB=sinB,
∴tanB=1,B∈(0,π).
由余弦定理可得:b2=a2+c2-2accosB
∴4≥2ac-$\sqrt{2}$ac,当且仅当a=c时取等号.
∴ac≤4+2$\sqrt{2}$.
∴S△ABC=$\frac{1}{2}acsinB$$≤\frac{1}{2}×(4+2\sqrt{2})×\frac{\sqrt{2}}{2}$=$\sqrt{2}$+1.
故答案为:$\sqrt{2}$+1.
点评 本题考查了余弦定理、三角形面积的计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.已知log2a>log2b,则下列不等式一定成立的是( )
A. | $\frac{1}{a}>\frac{1}{b}$ | B. | log2(a-b)>0 | C. | 2a-b<1 | D. | ${({\frac{1}{3}})^a}<{({\frac{1}{2}})^b}$ |
4.已知数列{an}满足an+1+an=2n-3,若a1=2,则a2014=( )
A. | 2007 | B. | 2006 | C. | 2005 | D. | 2009 |
5.如图所示,已知直线l:y=kx-1(k>0)与抛物线C:x2=4y交与M,N两点,F为抛物线C的焦点,若|MF|=2|NF|,则实数k的值为( )
A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{3\sqrt{2}}{4}$ |