题目内容
【题目】如图,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E为CD中点,以AE为折痕把△ADE折起,使点D到达点P的位置(P平面ABCE).
(1)证明:AE⊥PB;
(2)若直线PB与平面ABCE所成的角为,求二面角A﹣PE﹣C的余弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)连接BD,设AE的中点为O,可证,故而AE⊥平面POB,于是AE⊥PB;
(2)证明OP⊥OB,建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小.
(1)连接BD,设AE的中点为O,
∵AB∥CE,AB=CECD,
∴四边形ABCE为平行四边形,∴AE=BC=AD=DE,
∴△ADE,△ABE为等边三角形,
∴OD⊥AE,OB⊥AE,折叠后,
又OP∩OB=O,
∴AE⊥平面POB,又PB平面POB,
∴AE⊥PB.
(2)在平面POB内作PQ⊥平面ABCE,垂足为Q,则Q在直线OB上,
∴直线PB与平面ABCE夹角为∠PBO,
又OP=OB,∴OP⊥OB,
∴O、Q两点重合,即PO⊥平面ABCE,
以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,
则P(0,0,),E(,0,0),C(1,,0),
∴(,0,),(,,0),
设平面PCE的一个法向量为(x,y,z),则,即,
令x得(,﹣1,1),
又OB⊥平面PAE,∴(0,1,0)为平面PAE的一个法向量,
设二面角A﹣EP﹣C为α,则|cosα|=|cos|,
由图可知二面角A﹣EP﹣C为钝角,所以cosα.
练习册系列答案
相关题目