题目内容

已知抛物线C:y2=8x,O为坐标原点,动直线l:y=k(x+2)与抛物线C交于不同两点A,B
(1)求证:
OA
OB
为常数;
(2)求满足
OM
=
OA
+
OB
的点M的轨迹方程.
将y=k(x+2)代入y2=8x,整理得k2x2+(4k2-8)x+4k2=0,
∵动直线l与抛物线C交于不同两点A、B,
∴k≠0且△>0,即
k≠0
(4k2-8)2-16k4>0
解得:-1<k<1且k≠0.
设A(x1,y2),B(x2,y2),则x1+x2=
8
k2
-4,x1x2=4

(1)证明:
OA
OB
=x1x2+y1y2=x1x2+k2(x1+2)(x2+2)
=(k2+1)x1x2+2k2(x1+x2)+4k2=4(k2+1)+2k2(
8
k2
-4)+4k2=20

OA
OB
为常数.
(2)
OM
=
OA
+
OB
=(x1y1)+(x2y2)
=(x1+x2,y1+y2)=(x1+x2,k(x1+x2+4))=(
8
k2
-4,
8
k
)

设M(x,y),则
x=
8
k2
-4
y=
8
k
消去k得:y2=8x+32.
又由-1<k<1且k≠0得:0<k2<1,
1
k2
>1
,∴x=
8
k2
-4>4

∴点M的轨迹方程为y2=8x+32(x>4)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网