题目内容
【题目】为了研究某高校大学5000名新生的视力情况,随机地抽查了该校100名进校新生的视力情况,得到其频率分布直方图如右图,若规定视力低于5.0的学生属[于近视学生,则估计该校新生中不是近视的人数约为( )
A.300人
B.400人
C.600人
D.1000人
【答案】C
【解析】解:由频率分布直方图可知,视力在[5.0,5.1],[5.1,5.2]的频率分别为0.7×0.1=0.07,0.5×0.1=0.05.
∴在样本中,有100×(0.07+0.05)=12人不是近视,可见不近视率约为0.12
∵总体共有5000人,故估计该校新生中不是近视的人数约为5000×0.12=600
故选C
【考点精析】关于本题考查的用样本的数字特征估计总体的数字特征,需要了解用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差.在随机抽样中,这种偏差是不可避免的才能得出正确答案.
练习册系列答案
相关题目
【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
常喝 | 不常喝 | 合计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合计 | 30 |
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为 .
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)