题目内容
【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C= . (Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
【答案】解:(Ⅰ)∵c=2,C= ,c2=a2+b2﹣2abcosC ∴a2+b2﹣ab=4,
又∵△ABC的面积等于 ,
∴ ,
∴ab=4
联立方程组 ,解得a=2,b=2
(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A=4sinAcosA,
∴sinBcosA=2sinAcosA
当cosA=0时, , , , ,求得此时
当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,
联立方程组 解得 , .
所以△ABC的面积
综上知△ABC的面积
【解析】(Ⅰ)先通过余弦定理求出a,b的关系式;再通过正弦定理及三角形的面积求出a,b的另一关系式,最后联立方程求出a,b的值.(Ⅱ)通过C=π﹣(A+B)及二倍角公式及sinC+sin(B﹣A)=2sin2A,求出∴sinBcosA=2sinAcosA.当cosA=0时求出a,b的值进而通过 absinC求出三角形的面积;当cosA≠0时,由正弦定理得b=2a,联立方程解得a,b的值进而通过 absinC求出三角形的面积.
练习册系列答案
相关题目