题目内容
已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240036434981206.png)
(Ⅰ)当a=1时,求函数
在区间
上的最小值和最大值;
(Ⅱ)若函数
在区间
上是增函数,求实数a的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240036434981206.png)
(Ⅰ)当a=1时,求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643514447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643545398.png)
(Ⅱ)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643514447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643576326.png)
(1)
,
(2) ![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643623428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643592876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643608808.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643623428.png)
试题分析:(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643639336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643654863.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643654793.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643686563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643701336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643717378.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643732356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643764281.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643779473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643795447.png)
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | | - | 0 | ![]() | 0 | - | |
![]() | 15 | m | 极小值![]() | k | 极大值![]() | m | 3 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643592876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643608808.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003644076863.png)
∵函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003643795447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003644107311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003644122420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003644138587.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240036441541196.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003644154437.png)
点评:导数在研究函数中的运用,主要是对于函数单调性和最值问题的研究,利用导数的符号来求解函数的单调区间,进而判定极值,再结合端点值,得到最值。那么在涉及到给定函数的递增区间,求解参数范围的时候,一般利用导数恒大与等于零或者恒小于等于零来得到参数的范围,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目