题目内容
设的定义域为,值域为,(1)求证:;(2)求a的取值范围.
解析
已知二次函数的顶点坐标为,且,(1)求的解析式,(2)∈,的图象恒在的图象上方,试确定实数的取值范围,(3)若在区间上单调,求实数的取值范围.
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试写出关于的函数关系式,并求其定义域.(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
(12分)已知函数满足. (1)设,求在的上的值域; (2)设,在上是单调函数,求的取值范围.
已知,.(1)当;(2)当,并画出其图象;(3)求方程的解.
.(本小题13分)计算下列各式(1)
.(本小题满分12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.(1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;(2)当销售商一次订购多少件时,该服装厂获得的利润最大,最大利润是多少元?(服装厂售出一件服装的利润=实际出厂单价成本)
(本小题满分l0分)选修4—5:不等式选讲 已知函数.(Ⅰ)求证:;(Ⅱ)解不等式.