题目内容
.(本小题13分)计算下列各式(1)
(1)-9a;(2)19.
解析
已知二次函数(1) 画出函数图像(2)指出图像的开口方向、对称轴方程、顶点坐标;(3)求函数的最大值或最小值;(4)写出函数的单调区间
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
已知函数定义域为,若对于任意的,,都有,且>0时,有>0.⑴证明: 为奇函数;⑵证明: 在上为单调递增函数;⑶设=1,若<,对所有恒成立,求实数的取值范围.
(本小题满分12分)已知二次函数.(1)若,,解关于x不等式;(2)若f(x)的最小值为0,且A.<b,设,请把表示成关于t的函数g(t),并求g(t)的最小值.
(本小题满分12分)某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.(Ⅰ)求k的值,并求出的表达式;(Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?
已知函数的的定义域为.当时,求函数的最值及相应的的值。
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护需50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
设的定义域为,值域为,(1)求证:;(2)求a的取值范围.