题目内容
定义在R上的函数f(x)=
.对任意正实数ξ,有f(x+ξ)<f(x)成立.当满足不等式-6<f(x-t)<2的x的取值范围是-4<x<4时,实数t的值为______.
|
∵对任意正实数ξ,有f(x+ξ)<f(x)成立
∴函数为R上的单调减函数
令ax-2-7=-6,则x=2;令ax+6+1=2,则x=-6
∴不等式-6<f(x-t)<2等价于不等式f(2)<f(x-t)<f(-6)
∵函数为R上的单调减函数
∴2>x-t>-6
∴t-6<x<t+2
∵不等式-6<f(x-t)<2的x的取值范围是-4<x<4
∴t=2
故答案为:2
∴函数为R上的单调减函数
令ax-2-7=-6,则x=2;令ax+6+1=2,则x=-6
∴不等式-6<f(x-t)<2等价于不等式f(2)<f(x-t)<f(-6)
∵函数为R上的单调减函数
∴2>x-t>-6
∴t-6<x<t+2
∵不等式-6<f(x-t)<2的x的取值范围是-4<x<4
∴t=2
故答案为:2
练习册系列答案
相关题目