题目内容
【题目】若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有( )
A. 0对B. 1对C. 2对D. 3对
【答案】D
【解析】
根据“黄金点对“,只需要先求出当x<0时函数f(x)关于y轴对称的函数的解析式,再作出函数的图象,利用两个图象交点个数进行求解即可.
由题意知函数f(x)=2x,x<0关于y轴对称的函数为,x>0,
作出函数f(x)和,x>0的图象,
由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点.
所以函数f(x)的““黄金点对“有3对.
故选:D.
练习册系列答案
相关题目
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:,,,,,.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”