题目内容
【题目】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25. (Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(Ⅱ)直线l的参数方程是 (t为参数),l与C交与A,B两点,|AB|= ,求l的斜率.
【答案】解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25, ∴x2+y2+12x+11=0,
∵ρ2=x2+y2 , x=ρcosα,y=ρsinα,
∴C的极坐标方程为ρ2+12ρcosα+11=0.
(Ⅱ)∵直线l的参数方程是 (t为参数),
∴t= ,代入y=tsinα,得:直线l的一般方程y=tanαx,
∵l与C交与A,B两点,|AB|= ,圆C的圆心C(﹣6,0),半径r=5,
圆心到直线的距离d= .
∴圆心C(﹣6,0)到直线距离d= = ,
解得tan2α= ,∴tanα=± =± .
∴l的斜率k=±
【解析】(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2 , x=ρcosα,y=ρsinα,能求出圆C的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.
【考点精析】解答此题的关键在于理解圆的标准方程的相关知识,掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.
练习册系列答案
相关题目
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:)