题目内容
【题目】如图,在四棱锥中,侧面底面ABCD,侧棱,,底面ABCD为直角梯形,其中,,,O为AD中点.
求直线PB与平面POC所成角的余弦值.
求B点到平面PCD的距离.
线段PD上是否存在一点Q,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
【答案】(1)(2)(3)存在,
【解析】
试题(1)易得平面,所以即为所求.(2)由于,从而平面,所以可转化为求点到平面.(3)假设存在,过Q作,垂足为,过作,垂足为M,则即为二面角的平面角.设,利用求出,若,则存在,否则就不存在.
试题解析:(1) 在△PAD中PA="PD," O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD, 平面平面ABCD="AD,"平面PAD,
所以PO⊥平面ABCD.
又在直角梯形 中,易得;
所以以 为坐标原点,为 轴, 为 轴,
为轴建立空间直角坐标系.
则,, ,;
, 易证:,
所以平面的法向量,
所以与平面所成角的余弦值为
(2),设平面PDC的法向量为,
则,取 得
点到平面的距离
(3)假设存在,且设.
因为
所以,
设平面CAQ的法向量中,则
取,得.
平面CAD的一个法向量为,
因为二面角Q OC D的余弦值为,所以.
整理化简得:或(舍去),
所以存在,且
练习册系列答案
相关题目