题目内容
【题目】已知直线经过点.
(1)若原点到直线的距离为2,求直线的方程;
(2)若直线被两条相交直线和所截得的线段恰被点平分,求直线的方程.
【答案】(1)或;(2).
【解析】
(1)本题首先可以假设直线的斜率不存在,然后根据点得出直线方程,再然后假设直线斜率存在并设出直线方程,最后根据原点到直线的距离为2即可得出结果;
(2)本题首先可以设出直线与直线,的交点坐标、分别为、,然后根据中点坐标的相关性质得出、,再然后根据在上以及在上得出并解得的坐标是,最后根据直线的两点式方程即可得出结果.
(1)①直线的斜率不存在时,显然成立,直线方程为.
②当直线斜率存在时,设直线方程为,
由原点到直线的距离为2得,解得,
故直线的方程为,即,
综上,所求直线方程为或.
(2)设直线夹在直线,之间的线段为(在上,在上),
、的坐标分别设为、,
因为被点平分,所以,,
于是,
由于在上,在上,即,解得,,
即的坐标是,故直线的方程是,即.
练习册系列答案
相关题目
【题目】某高中在校学生2000人为了响应“阳光体育运动”号召,学校举行了跑步和登山比赛活动每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如表:
高一年级 | 高二年级 | 高三年级 | |
跑步 | a | b | c |
登山 | x | y | z |
其中a:b::3:5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,现用分层抽样方式从中抽取一个100个人的样本进行调查,则高二年级参与跑步的学生中应抽取
A. 6人B. 12人C. 18人D. 24人