题目内容
已知函数f(x)=sinω2x+
sinωxsin(ωx+
)(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调增区间;
(Ⅲ)求函数f(x)在区间[0,
]上的取值范围.
3 |
π |
2 |
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调增区间;
(Ⅲ)求函数f(x)在区间[0,
2π |
3 |
分析:(Ⅰ)由三角函数公式化简可得f(x)=sin(2ωx-
)+
,由周期公式可得答案;
(Ⅱ)f(x)=sin(2x-
)+
,由-
+2kπ2x-
≤
+2kπ解之可得单调递增区间;
(Ⅲ)f(x)=sin(2x-
)+
,由0≤x≤
,结合三角函数的单调性,逐步运算可得所求值得范围.
π |
6 |
1 |
2 |
(Ⅱ)f(x)=sin(2x-
π |
6 |
1 |
2 |
π |
2 |
π |
6 |
π |
2 |
(Ⅲ)f(x)=sin(2x-
π |
6 |
1 |
2 |
2π |
3 |
解答:解:(Ⅰ)由三角函数公式化简可得:
f(x)=sinω2x+
sinωxsin(ωx+
)
=sinω2x+
sinωxcosωx=
+
sin2ωx
=sin(2ωx-
)+
∵函数f(x)的最小正周期为π,且ω>0,
∴T=π=
,解之可得ω=1
(Ⅱ)由(Ⅰ)得f(x)=sin(2x-
)+
,
由-
+2kπ2x-
≤
+2kπ可得
-
+kπx≤
+kπ,k∈Z
∴函数的单调增区间为[-
+kπ,
+kπ],k∈Z
(Ⅲ)∵f(x)=sin(2x-
)+
,0≤x≤
,
∴-
≤2x-
≤
,∴-
≤sin(2x-
)≤1,
∴0≤sin(2x-
)+
≤
,
即f(x)的取值范围为[0,
]
f(x)=sinω2x+
3 |
π |
2 |
=sinω2x+
3 |
1-cos2ωx |
2 |
| ||
2 |
=sin(2ωx-
π |
6 |
1 |
2 |
∵函数f(x)的最小正周期为π,且ω>0,
∴T=π=
2π |
2ω |
(Ⅱ)由(Ⅰ)得f(x)=sin(2x-
π |
6 |
1 |
2 |
由-
π |
2 |
π |
6 |
π |
2 |
-
π |
6 |
π |
3 |
∴函数的单调增区间为[-
π |
6 |
π |
3 |
(Ⅲ)∵f(x)=sin(2x-
π |
6 |
1 |
2 |
2π |
3 |
∴-
π |
6 |
π |
6 |
7π |
6 |
1 |
2 |
π |
6 |
∴0≤sin(2x-
π |
6 |
1 |
2 |
3 |
2 |
即f(x)的取值范围为[0,
3 |
2 |
点评:本题考查三角函数的公式的应用,涉及正弦函数的单调性和值域,属中档题.
练习册系列答案
相关题目