题目内容
已知函数
.
(1)当
时,试确定函数
在其定义域内的单调性;
(2)求函数
在
上的最小值;
(3)试证明:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234577051033.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
(2)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
(3)试证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234577671565.png)
(1)当
时,函数
的单调递减区间为
,单调递增区间为
;
(2)
;(3)详见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457829459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234578921861.png)
试题分析:(1)先求出函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457954527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457954527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458001607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458017452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458032283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458048353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458110886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458126649.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458141522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458188561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
试题解析:(1)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458251566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458282723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458313893.png)
解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458344435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458360622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458375360.png)
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457829459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458438812.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458453999.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458469402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458485677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458563358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234585781209.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458594387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458609843.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458625469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458641569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458485677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457751454.png)
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458563358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234585781209.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458750552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458765461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458797569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458329618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458812551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458360622.png)
此时函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458017452.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234589061913.png)
综上所述,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234589211866.png)
(3)要证不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458110886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240234589531028.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458968916.png)
即证不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458126649.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458999642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459015455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459031491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459046869.png)
即不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459062641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459077460.png)
由(1)知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458282723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457876543.png)
即函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023457720495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459077460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459296702.png)
故有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458188561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459062641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459077460.png)
即对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023459358531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023458110886.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目