题目内容
【题目】已知函数.
(1)当时,求在处切线方程;
(2)讨论的单调区间;
(3)试判断时的实根个数说明理由.
【答案】(1);
(2)当时,函数的增区间是,减区间是;
当时,函数的增区间是,减区间是;
当时,函数的增区间是;
当时,函数的增区间是,减区间是;
(3)只有一个零点.
【解析】
(1)求出函数的导数,把代入,,代入导函数中,求出切线的斜率,求出切线方程;
(2),根据的正负性以及之间的大小关系,进行分类,确定的不同区间,求出不同区间下,函数的单调性;
(3)由(2)可知:当时,函数的增区间是,减区间是,求出函数的极大值、极小值,再判断出当时,,由此可以判断出函数的零点的情况.
(1),
当时,,,所以在处切线方程为
,化简得:,
即.
(2),函数的定义域为,
①当时,当时,,函数单调递减,当时,,函数单调递增;
②当时,当时,,函数单调递增, 当时,,函数单调递减,当时,,函数单调递增;
③当时,, 当时,函数单调递增;
④当时,当时,,函数单调递增, 当时,,函数单调递减,当时,,函数单调递增;
综上所述:
当时,函数的增区间是,减区间是;
当时,函数的增区间是,减区间是;
当时,函数的增区间是;
当时,函数的增区间是,减区间是.
(3)由(2)可知:当时,函数的增区间是,减区间是,
所以是极大值点,是极小值点,,,时,,所以时,的实根个数为1个.
练习册系列答案
相关题目
【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
组别 | 候车时间 | 人数 |
一 | 2 | |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自同一组的概率.