题目内容
已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意的m,n∈N*都有:
(1)f(m,n+1)=f(m,n)+2.
(2)f(m+1,1)=2f(m,1).
给出以下三个结论:①f(1,5)=9;②f(5,1)=16;
③f(5,6)=26.其中正确结论的序号有 .
(1)f(m,n+1)=f(m,n)+2.
(2)f(m+1,1)=2f(m,1).
给出以下三个结论:①f(1,5)=9;②f(5,1)=16;
③f(5,6)=26.其中正确结论的序号有 .
①②③
在(1)式中令m=1可得
f(1,n+1)=f(1,n)+2,
则f(1,5)=f(1,4)+2=…=9;
在(2)式中,由f(m+1,1)=2f(m,1)得,
f(5,1)=2f(4,1)=…=16f(1,1)=16,
从而f(5,6)=f(5,1)+10=26,故①②③均正确.
f(1,n+1)=f(1,n)+2,
则f(1,5)=f(1,4)+2=…=9;
在(2)式中,由f(m+1,1)=2f(m,1)得,
f(5,1)=2f(4,1)=…=16f(1,1)=16,
从而f(5,6)=f(5,1)+10=26,故①②③均正确.
练习册系列答案
相关题目