题目内容
【题目】已知函数.
(1)当时,求不等式的解集;
(2)若不等式对任意的恒成立,求的取值范围.
【答案】(1)或;(2).
【解析】
(1)当a=2时,结合函数的解析式零点分段求解不等式的解集即可;
(2)原问题等价于,据此结合恒成立的条件确定实数a的取值范围即可.
(1)当a=2时,,
当x≤-2时,由x-4≥2x+1,解得x≤-5;
当-2<x<1时,由3x≥2x+1,解得x∈;
当x≥1时,由-x+4≥2x+1,解得x=1.
综上可得,原不等式的解集为{x|x≤-5或x=1}.
(2)因为x∈(0,2),所以f(x)>x-2等价于|ax-2|<4,
即等价于,
所以由题设得在x∈(0,2)上恒成立,
又由x∈(0,2),可知,,
所以-1≤a≤3,即a的取值范围为[-1,3].
练习册系列答案
相关题目
【题目】端午节(每年农历五月初五),是中国传统节日,有吃粽子的习俗.某超市在端午节这一天,每售出kg粽子获利润元,未售出的粽子每kg亏损元.根据历史资料,得到销售情况与市场需求量的频率分布表,如下表所示.该超市为今年的端午节预购进了kg粽子.以(单位:kg,)表示今年的市场需求量,(单位:元)表示今年的利润.
市场需求量(kg) | |||||
频率 | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
(1)将表示为的函数;
(2)在频率分布表的市场需求量分组中,以各组的区间中间值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的数学期望.