题目内容
【题目】如图,已知三棱柱中,平面平面,,.
(1)证明:;
(2)设,,求二面角的余弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)连结.由菱形得对角线垂直,再由已知及面面垂直的性质定理得线面垂直平面,平面,从而,于是证得线面垂直后再得线线垂直;
(2)取的中点为,连结,证得与都垂直后,以为原点,为正方向建立空间直角坐标系,写出各点坐标,求出平面的法向量,则法向量夹角得二面角,注意要判断二面角是锐角还是钝角.
(1)连结.
∵,四边形为菱形,∴.
∵平面平面,平面平面,
平面,,
∴平面.
又∵,∴平面,∴.
∵,
∴平面,而平面,
∴
(2)取的中点为,连结.
∵,四边形为菱形,,∴,.
又由(1)知,以为原点,为正方向建立空间直角坐标系,如图.
设,,,,
∴(0,0,0),(1,0,),(2,0,0),(0,1,0),(-1,1,).
由(1)知,平面的一个法向量为.
设平面的法向量为,则,∴.
∵,,∴.
令,得,即.
∴,
∴二面角的余弦值为
练习册系列答案
相关题目