题目内容

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求 的值.

【答案】证明:(I)∵AA1C1C是正方形,∴AA1⊥AC. 又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2 , ∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),

设平面A1BC1的法向量为 ,平面B1BC1的法向量为 =(x2 , y2 , z2).
,令y1=4,解得x1=0,z1=3,∴
,令x2=3,解得y2=4,z2=0,∴
= = =
∴二面角A1﹣BC1﹣B1的余弦值为
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D
= =(0,3,﹣4),
,∴
,解得t=


【解析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,利用向量垂直于数量积得关系即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网