题目内容

【题目】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,,且xyz,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且abc,在不同的方案中,最低的总费用(单位:元)是()
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz

【答案】B
【解析】由xyz,abc,所以ax+by+cz-(az+by+cx)=a(x-z)+c(z-x)=(x-z)(a-c)0,故ax+by+czaz+by+cx;
同理,ay+bz+cx-(ay+bx+cz)=b(z-x)+c(x-z)=(x-z)(c-b)0,故ay+bz+cxay+bx+cz
因为az+by+cx-(ay+bz+cx)=a(z-y)+b(y-z)=(a-b)(z-y)0,故az+by+cxay+bz+cx,故最低费用为az+by+cx,故选B。
本题主要考察不等式的性质以及不等式比较大小。解答本题时要能够对四个选项利用作差的方式进行比较,确认最小值。本题属于容易题,重点考察学生作差比较的能力。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网