题目内容

若数列{an} 满足
an+12an2
=p
(p为正常数,n∈N*),则称{an} 为“等方比数列”.则“数列{an} 是等方比数列”是“数列{an} 是等比数列”的
必要非充分
必要非充分
条件.
分析:若{an} 为“等方比数列”,说明数列{an2}成公比为p的等比数列,而数列{an}的符号不能确定,故不一定成等比数列;反过来若“数列{an} 是等比数列”成立,说明
a n+1
a n
=q是一个非零常数,则
an+12
an2
=q2
是一个正常数符合等方比的定义,所以“数列{an} 是等方比数列”成立.由此可以得出正确答案.
解答:解:充分性:若数列{an} 为“等方比数列”,设
an+12
an2
=p=1

可得数列{an} 的各项的绝对值相等,但符号不能确定.
比如:1,1,-1,-1,1,1,-1,-1,…,
就是一个等方比数列,而不是等比数列,故充分性不成立;
必要性:若“数列{an} 是等比数列”,设它的公比是q(q≠0)
a n+1
a n
=q⇒
an+12
an2
=q2
(正常数),
说明数列{an} 为“等方比数列”,故必要性成立.
综上所述,“数列{an} 是等方比数列”是“数列{an} 是等比数列”的 必要非充分条件
故答案为:必要非充分
点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题.将条件进行化简,找出“谁能推出谁”和“谁被谁推出”的问题,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网