题目内容
【题目】过抛物线的对称轴上一点的直线与抛物线相交于M、N两点,自M、N向直线作垂线,垂足分别为、.
(Ⅰ)当时,求证:⊥;
(Ⅱ)记、、的面积分别为、、,是否存在,使得对任意的,都有成立.若存在,求值;若不在,说明理由.
【答案】(Ⅰ)略
(Ⅱ)存在,使得对任意的,都有成立,证明略
【解析】
解:
依题意,可设直线MN的方程为,则有
由消去x可得
从而有①
于是②
又由,可得③
(Ⅰ)如图1,当时,点即为抛物线的焦点,为其准线
此时①可得
证法1:
证法2:
(Ⅱ)存在,使得对任意的,都有成立,证明如下:
证法1:记直线与x轴的交点为,则.于是有
将①、②、③代入上式化简可得
上式恒成立,即对任意成立
证法2:如图2,连接,则由可得
,
所以直线经过原点O,同理可证直线也经过原点O
又设
则
【题目】现有一环保型企业,为了节约成本拟进行生产改造,现将某种产品产量与单位成本统计数据如下:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
产量(千件) | 2 | 3 | 4 | 5 | 4 | 5 |
单位成本(元/件) | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ)试确定回归方程;
(Ⅱ)指出产量每增加1000件时,单位成本平均下降多少?
(Ⅲ)假定单位成本为70元/件时,产量应为多少件?
(参考公式:.)
(参考数据 )
【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数(),数据统计如下:
空气质量指数() | 0-50 | 51-100 | 101-150 | 151-200 | 201-250 |
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 | 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;
(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件“两天空气都为良”发生的概率.