题目内容
1.函数f(x)=x2-2x+2在区间[t,t+1]上的最小值为g(t),求g(t)的表达式及其最值.分析 先求出函数的对称轴,通过讨论t的范围,确定函数的单调性,从而求出g(t)的表达式,画出g(t)的图象,得到最值即可.
解答 解:函数f(x)的对称轴是x=1,
∴函数f(x)在(-∞,1)单调递减,在(1,+∞)单调递增,
①当t+1≤1,即t≤0时,f(x)在[t,t+1]单调递减,
g(t)=f(x)min=f(t+1)=t2+1,
②1<t+1<2,即0<t<1时,f(x)在[t,1)递减,在(1,t+1]递增,
∴g(t)=f(x)min=f(1)=1,
③t≥1时,函数f(x)在[t,t+1]单调递增,
∴g(t)=f(x)min=f(t)=t2-2t+2,
∴g(t)=$\left\{\begin{array}{l}{{t}^{2}+1,(t≤0)}\\{1,(0<t<1)}\\{{t}^{2}-2t+2(t≥1)}\end{array}\right.$,
画出函数g(t)的图象,如图示:
∴g(t)的最小值是1,无最大值.
点评 本题考查了二次函数的性质,函数的单调性、最值问题,考查分类讨论思想,是一道中档题.
练习册系列答案
相关题目
9.下列结论中正确的是( )
A. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$的长度相等且方向相同或相反 | |
B. | 若向量$\overrightarrow{AB}$与$\overrightarrow{CD}$满足|$\overrightarrow{AB}$|>|$\overrightarrow{CD}$|,且$\overrightarrow{AB}$与$\overrightarrow{CD}$同向,则$\overrightarrow{AB}$>$\overrightarrow{CD}$ | |
C. | 若$\overrightarrow{a}$=$\overrightarrow{b}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$ | |
D. | 由于零向量方向不定,故零向量不能与任一向量平行 |