题目内容
【题目】已知向量 =(﹣2,1), =(x,y)
(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足 =﹣1的概率;
(2)若x,y在连续区间[1,6]上取值,求满足 <0的概率.
【答案】
(1)解:将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;
由 =﹣1有﹣2x+y=﹣1,所以满足ab=﹣1的基本事件为(1,1),(2,3),(3,5),共3个;
故满足 =﹣1的概率为 = .
(2)解:若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};
满足 <0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且﹣2x+y<0};
画出图形如下图,
矩形的面积为S矩形=25,阴影部分的面积为S阴影=25﹣ ×2×4=21,
故满足 <0的概率为 .
【解析】(1)本小题考查的知识点是古典概型,关键是要找出满足条件满足 =﹣1的基本事件个数,及总的基本事件的个数,再代入古典概型公式进行计算求解.(2)本小题考查的知识点是几何概型的意义,关键是要画出满足条件的图形,结合图形分析,找出满足条件的点集对应的图形面积,及图形的总面积.
【考点精析】本题主要考查了几何概型的相关知识点,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等才能正确解答此题.
【题目】某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:
资源 | 资金(万元) | 场地(平方米) |
A | 2 | 100 |
B | 35 | 50 |
现有资金12万元,场地400平方米,生产每吨A种产品可获利润3万元;生产每吨B种产品可获利润2万元,分别用x,y表示计划生产A、B两种产品的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问A、B两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润.
【题目】为了解春季昼夜温差大小与种子发芽多少之间的关系,现从4月的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每50颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月6日 | 4月12日 | 4月19日 | 4月27日 |
温差 | 2 | 3 | 5 | 4 | 1 |
发芽数颗 | 9 | 11 | 15 | 13 | 7 |
(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均小于13”的概率;
(2)若4月30日昼夜温差为,请根据关于的线性回归方程估计该天种子浸泡后的发芽数.
参考公式: , .