题目内容

【题目】在多面体中,四边形是边长均为的正方形,四边形是直角梯形,,且

(1)求证:平面平面

(2)若,求四棱锥的体积.

【答案】(1)详见解析(2)

【解析】

试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明往往利用线面垂直判定定理给予证明,即从线线垂直出发给予证明,而线线垂直,往往需要从两方面进行寻找与论证,一是结合平几知识,本题利用勾股定理证得,二是利用线面垂直性质定理,即先由线线垂直得线面垂直平面,而,则平面,因此可得,最后根据线面垂直判定定理得平面,(2)求四棱锥的体积,关键是求高,而高的寻找依赖于线面垂直:过,则易证过,即为高,最后根据体积公式得体积

试题解析:

(1)证明:连接,由可知:

可得,从而.......................3分

平面

平面平面

平面平面平面................6分

(2)

的平行线交于的延长线于点,连接交于点

,.................8分

可得四边形的面积,....................10分

...............12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网