题目内容
1.已知实数x,y满足不等式组$\left\{{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤3}\end{array}}\right.$,则x+2y的最大值为5.分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}$x+$\frac{z}{2}$,
平移直线y=-$\frac{1}{2}$x+$\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{2}$经过点C时,直线的截距最大,此时z最大.
由 $\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$,得 $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即C(1,2),
此时z的最大值为z=1+2×2=5,
故答案为:5.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关题目
10.已知角α的终边上一点P落在直线y=2x上,则sin2α=( )
A. | $-\frac{{2\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |