题目内容
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
算得,K2≈7.8.见附表:参照附表,得到的正确结论是( )
男 | 女 | 总计 | |||||
爱好 | 40 | 20 | 60 | ||||
不爱好 | 20 | 30 | 50 | ||||
总计 | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关”
D. 有99%以上的把握认为“爱好该项运动与性别无关”
【答案】C
【解析】∵观测值
∴在犯错误概率不超过0.1的前提下认为“爱好该项运动与性别无关”,
即有 以上的把握认为“爱好该项运动与性别有关”.
故选C.
【题目】高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:
喜欢中国古典文学 | 不喜欢中国古典文学 | 合计 | |
女生 | 5 | ||
男生 | 10 | ||
合计 | 50 |
已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有的把握认为喜欢中国古典文学与性别有关?请说明理由;
(3)已知在喜欢中国古典文学的10位男生中,,,还喜欢数学,,还喜欢绘画,,还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求和不全被选中的概率.
参考公式及数据:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:
常喝 | 不常喝 | 总计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
总计 | 30 |
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为.
(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
独立性检验临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中n=a+b+c+d.