题目内容
3.如图,在四棱锥 P-ABCD中,底面ABCD是边长为2的正方形,平面PAD⊥底面 ABCD,E在棱PD上,且AE⊥PD.(Ⅰ)求证:平面ABE⊥平面PCD;
(Ⅱ)已知AE与底面ABCD所成角为60°,求二面角C-BE-D的正切值.
分析 (I)平面PAD⊥底面ABCD,CD⊥AD,可得CD⊥平面PAD,CD⊥AE,又AE⊥PD,可得AE⊥平面PCD,即可证明;
(II)在平面PAD中,过点A作AD的垂线,作为z轴,以AB为x轴,AD为y轴.建立空间直角坐标系A-xyz,由平面PAD⊥底面ABCD,可得∠EAD即为AE与底面ABCD所成角为60°,$E(0,\frac{1}{2},\frac{\sqrt{3}}{2})$.设平面BED的法向量为$\overrightarrow{n}$=(x,y,z),利用$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=0}\end{array}\right.$,可得$\overrightarrow{n}$.同理利用$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{BE}=0}\end{array}\right.$,可得平面BCE的法向量$\overrightarrow{m}$,由$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$,即可得出二面角C-B E-D的正切值.
解答 (I)证明:∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,CD⊥AD,
∴CD⊥平面PAD,
∴CD⊥AE,
又AE⊥PD,
∴AE⊥平面PCD.
∵AE?平面ABE,
∴平面ABE⊥平面PCD;
(II)解:在平面PAD中,过点A作AD的垂线,作为z轴,以AB为x轴,AD为y轴.建立空间直角坐标系A-xyz,
则B(2,0,0),C(2,2,0),D(0,2,0).
∵平面PAD⊥底面ABCD,
∴∠EAD即为AE与底面ABCD所成角为60°,∴$E(0,\frac{1}{2},\frac{\sqrt{3}}{2})$.
$\overrightarrow{BD}$=(-2,2,0),$\overrightarrow{BE}$=$(-2,\frac{1}{2},\frac{\sqrt{3}}{2})$,
设平面BED的法向量为$\overrightarrow{n}$=(x,y,z),∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=0}\end{array}\right.$,$\left\{\begin{array}{l}{-2x+2y=0}\\{-2x+\frac{1}{2}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,
取$\overrightarrow{n}$=$(1,1,\sqrt{3})$.
同理利用$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{BE}=0}\end{array}\right.$,可得平面BCE的法向量$\overrightarrow{m}$=$(\sqrt{3},0,4)$,
由$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{5\sqrt{3}}{\sqrt{19}•\sqrt{5}}$=$\frac{\sqrt{15}}{\sqrt{19}}$,
∴二面角C-B E-D的正切值为$\frac{2\sqrt{15}}{15}$.
点评 本题考查了线面面面垂直的判定与性质定理、利用法向量求空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.
A. | 2$\sqrt{2}$或$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | 2$\sqrt{2}$ |