题目内容

【题目】2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图: (I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=

【答案】解:(I)依题意得:评分在[40,50)、[50,60)的频率分别为0.02和0.03,

所以评分在[40,50)、[50,60)的市民分别有2个和3个,记为A1,A2,B1,B2,B3

从评分低于6(0分)的市民中随机抽取2人,所有可能的结果共有10种,

它们是{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{B1,B2},{B1,B3},{B2,B3}.

其中2人评分都在[50,60)的有三种,即{B1,B2},{B1,B3},{B2,B3}.

故所求的概率为

(II)由样本的频率分布直方图可得满意程度的平均得分为45×0.02+55×0.03+65×0.15+75×0.24+85×0.3+95×0.26=80.5.

可估计市民的满意指数为

所以该项目能通过验收.


【解析】(I)利用列举法确定基本事件,即可求出这2人评分恰好都在[50,60)的概率;(II)求出市民的满意指数,可得结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网