题目内容
(本小题满分14分)
如图6,已知正方体的棱长为2,点是正方形的中心,点、分别是棱的中点.设点分别是点,在平面内的正投影.
(1)求以为顶点,以四边形在平面内的正投影为底面边界的棱锥的体积;
(2)证明:直线平面;
(3)求异面直线所成角的正弦值.
(1)(2)略 (3)
解析:
(1)依题作点、在平面内的正投影、,则、分别为、的中点,连结、、、,则所求为四棱锥的体积,其底面面积为
,
又面,,∴.
(2)以为坐标原点,、、所在直线分别作轴,轴,轴,得、,又,,,则,,,
∴,,即,,
又,∴平面.
(3),,则,设异面直线所成角为,则.
练习册系列答案
相关题目