题目内容
【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),其中0≤α<π.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=4cosθ.直线l与曲线C1相切.
(1)将曲线C1的极坐标方程化为直角坐标方程,并求α的值.
(2)已知点Q(2,0),直线l与曲线C2:x2+ =1交于A,B两点,求△ABQ的面积.
【答案】
(1)解:曲线C1:ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程:x2+y2=4x,配方为C1:(x﹣2)2+y2=4,可得圆心(2,0),半径r=2
直线l的参数方程为 (t为参数),其中0≤α<π,普通方程为y﹣ =k(x﹣1),k=tanα,0≤α<π,
∵直线l与曲线C1相切,∴ =2,∴k= ,∴α=
(2)解:直线l的方程为y= x+ ,代入曲线C2:x2+ =1,整理可得10x2+4x﹣5=0,
∴|AB|= = ,
Q到直线的距离d= =2,
∴△ABQ的面积S= =
【解析】(1)曲线C1:ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ代入可得C的直角坐标方程,利用直线l与曲线C1相切求α的值.(2)直线l的方程为y= x+ ,代入曲线C2:x2+ =1,整理可得10x2+4x﹣5=0,求出|AB|,Q到直线的距离,即可求△ABQ的面积.
【题目】已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于( )
A.
B.1
C.2
D.4
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
定义学生对餐厅评价的“满意度指数”如下:
分数 | [0,30) | [30,50) | [50,60] |
满意度指数 | 0 | 1 | 2 |
(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.