题目内容

设定义在R上的函数f(x)=
1
|x-2
,x≠2
1,x=2
,若关于x的方程f2(x)+af(x)+b=3有3个不同实数解x1、x2、x3,且x1<x2<x3,则下列说法中正确的是

①a+b=0;②x1+x3>2x2;③x1+x3=5;④.x12+x22+x32=14.
分析:题中原方程f2(x)+af(x)+b=3有且只有3个不同实数解,即要求对应于方程:f(x)=某个常数,有3个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=1时,它有三个根.故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,即解分别是1,2,3.从而问题解决.
解答:解:作出f(x)的简图:
由图可知,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,
即解分别是1,2,3.
故x12+x22+x32=12+22+32=14.
故答案为:④.
点评:本小题主要考查函数的零点与方程根的关系、函数的图象等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网