题目内容
设定义在R上的函数f(x)=
|
分析:题中原方程f2(x)+af(x)+b=3有且只有3个不同实数解,即要求对应于f(x)=某个常数有3个不同实数解,
故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=1时,它有三个根.故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,
即解分别是1,2,3.从而问题解决.
故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=1时,它有三个根.故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,
即解分别是1,2,3.从而问题解决.
解答:解:作出f(x)的简图:
由图可知,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,
即解分别是1,2,3.
故x12+x22+x32=12+22+32=14.
故填:14.
由图可知,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,
即解分别是1,2,3.
故x12+x22+x32=12+22+32=14.
故填:14.
点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关题目
设定义在R上的函数f(x)同时满足以下条件:①f(x+1)=-f(x)对任意的x都成立;②当x∈[0,1]时,f(x)=ex-e•cos
+m(其中e=2.71828…是自然对数的底数,m是常数).记f(x)在区间[2013,2016]上的零点个数为n,则( )
πx |
2 |
A、m=-
| ||
B、m=1-e,n=5 | ||
C、m=-
| ||
D、m=e-1,n=4 |