题目内容
16.二次函数f(x)的图象经过点(0,$\frac{3}{2}$),且f′(x)=-x-1,则不等式f(10x)>0的解集为( )A. | (-3,1) | B. | (-lg3,0) | C. | ($\frac{1}{1000}$,1) | D. | (-∞,0) |
分析 先求出函数f(x)的表达式,解不等式求出x的范围即可.
解答 解:∵f′(x)=-x-1,
∴f(x)=-$\frac{1}{2}$x2-x+c,将(0,$\frac{3}{2}$)代入得:c=$\frac{3}{2}$,
∴f(x)=-$\frac{1}{2}$x2-x+$\frac{3}{2}$,
令f(x)>0,解得:-3<x<1,
∴-3<10x<1,解得:x<0,
故选:D.
点评 本题考查了二次函数的性质,考查了导数的应用,求出函数f(x)的表达式是解题的关键,本题属于基础题.
练习册系列答案
相关题目
6.已知a>0,ab=1,4a+2b+$\frac{b}{a}$的最小值是( )
A. | 4$\sqrt{2}$ | B. | 8 | C. | 6 | D. | 7 |