题目内容
6.已知a>0,ab=1,4a+2b+baba的最小值是( )A. | 4√2√2 | B. | 8 | C. | 6 | D. | 7 |
分析 由题意可得b=1a1a,进而可得4a+2b+baba=a+a+a+a+1a1a+1a1a+1a21a2,由基本不等式可得.
解答 解:∵a>0,ab=1,∴b=1a1a,
∴4a+2b+baba=4a+2a2a+1a21a2
=a+a+a+a+1a1a+1a1a+1a21a2
≥7\root{7}{a•a•a•a•\frac{1}{a}•\frac{1}{a}•\frac{1}{{a}^{2}}}\root{7}{a•a•a•a•\frac{1}{a}•\frac{1}{a}•\frac{1}{{a}^{2}}}=7
当且仅当a=1a1a=1a21a2即a=1时取等号
故选:D
点评 本题考查基本不等式求最值,属基础题.
A. | √32√32 | B. | √23√23 | C. | 2√232√23 | D. | 2323 |
A. | -15 | B. | 15 | C. | -5 | D. | 5 |
A. | (-3,1) | B. | (-lg3,0) | C. | (11000,1) | D. | (-∞,0) |