题目内容
已知等差数列
的首项
,公差
,且第2项、第5项、第14项分别是等比数列
的第2项、第3项、第4项.
(1)求数列
、
的通项公式;
(2)设数列
对任意的
,均有
成立,求
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545337457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545353370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545384436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545587475.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545337457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545587475.png)
(2)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545649433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545680519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545711934.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545727606.png)
(1)
,
(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545758819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545789841.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545821445.png)
试题分析:(1)由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545852528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545867563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545899614.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545930910.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545945412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545977416.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545384436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545977416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545758819.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546055535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546101568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545587475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546148798.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545789841.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545711934.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546304435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546335944.png)
①-②,得当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546304435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546382767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546398871.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546429356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546445559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546476396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240145465071071.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014545727606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014546538779.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240145465691138.png)
点评:本题考查了等比数列的性质,以及等差数列和等比数列的通项公式的求法,对于复杂数列的前n项和求法我们一般先求出数列的通项公式,再依据数列的特点采取具体的方法.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目