题目内容

【题目】已知椭圆的离心率为,直线,圆的方程为,直线被圆截得的弦长与椭圆的短轴长相等,椭圆的左顶点为,上顶点为.

1)求椭圆的方程;

2)已知经过点且斜率为直线与椭圆有两个不同的交点,请问是否存在常数,使得向量共线?如果存在,求出的值;如果不存在,请说明理由.

【答案】12)不存在;详见解析

【解析】

1)求得圆心到直线的距离,利用直线和圆相交所得弦长公式列方程,解方程求得的值,结合椭圆离心率以及,求得的值,进而求得椭圆离心率.

2)设出直线的方程,联立直线的方程和椭圆的方程,写出根于系数关系以及判别式,利用共线以及向量共线的坐标表示列方程,由此判断出不存在符合题意的常数.

1)圆心到直线的距离为

直线被圆截得的弦长.

由椭圆离心率为,结合可得.即椭圆的方程为:.

2)设直线的方程为

代入椭圆方程,整理,得,①

因为直线与椭圆有两个不同的交点等价于

解得.

,则

由①得,②

,③

因为,所以.

所以共线等价于.

将②③代入上式,解得(舍).

因为不满足

所以不存在常数,使得向量共线.

练习册系列答案
相关题目

【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.

(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量(百斤)与使用堆沤肥料(千克)之间对应数据如下表

使用堆沤肥料(千克)

2

4

5

6

8

产量的增加量(百斤)

3

4

4

4

5

依据表中的数据,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量是多少百斤?

(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且);

前8小时内的销售量(单位:份)

15

16

17

18

19

20

21

频数

10

x

16

6

15

13

y

若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求的取值范围.

附:回归直线方程为,其中.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网