搜索
题目内容
已知函数
是奇函数。
(1):求
的值;
(2):当
时,求
的反函数
。
试题答案
相关练习册答案
(1)0(2)
(1):
(2):
,当
时,
且反解得到
,
,结合
得到:
练习册系列答案
导学新作业系列答案
学考新视野系列答案
学考英语阅读理解与完形填空系列答案
学考精练百分导学系列答案
学考传奇系列答案
学海乐园系列答案
星级口算天天练系列答案
世纪金榜初中全程复习方略系列答案
芒果教辅达标测试卷系列答案
轻松28套阳光夺冠系列答案
相关题目
以下命题正确的是
。
①把函数
的图象向右平移
个单位,得到
的图象;
②一平面内两条曲线的方程分别是
,它们的交点是
,
则方程
表示的曲线经过点
;
③
为长方形,
,
,
为
的中点,在长方形
内随机取一
点,取得的点到
距离大小1的概率为
;
④若等差数列
前
项和为
,则三点
共线。
设
是定义在
上的奇函数,且当
时,
.
(Ⅰ) 求
时,
的表达式;
(Ⅱ) 令
,问是否存在
,使得
在x = x
0
处的切线互相平行?若存在,请求出
值;若不存在,请说明理由.
设
,
为常数).当
时,
,且
为
上的奇函数.
⑴ 若
,且
的最小值为
,求
的表达式;
⑵ 在 ⑴ 的条件下,
在
上是单调函数,求
的取值范围.
已知f(x)在x=a处可导,且f′(a)=b,求下列极限:
(1)
; (2)
已知
(1)判断
的奇偶性;
(2)当
时,画出
的简图,并指出函数的单调区间.
甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,速度不得超过50千米/ 小时。已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
v
千米/小时的平方成正比,比例系数为 0.02;固定部分为50元/小时.
(1)把全程运输成本
y
(元)表示为速度
v
(千米/时)的函数,并指出定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
已知s=
,(1)计算t从3秒到3.1秒内平均速度;(2)求t=3秒是瞬时速度。
已知函数
、
.
(1)讨论函数
的奇偶性(只写结论,不要求证明);
(2)在构成函数
的映射
中,当输入值为
和2时分别对应的输出值为
和
,求
、
的值;
(3)在(2)的条件下,求函数
(
)的最大值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总