题目内容

【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大小;
(Ⅱ)若 ,求△ABC的面积.

【答案】解:(Ⅰ)∵(2a﹣c)cosB=bcosC,由正弦定理,得 ∴(2sinA﹣sinC)cosB=sinBcosC.
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
∵A∈(0,π),∴sinA≠0.
∴cosB= 又∵0<B<π,∴B=
(Ⅱ)由正弦定理 ,得 b= =
∵A= ,B= ,∴C= ,∴sinC=sin =sin( + )=sin cos +cos sin =
∴S= = =
【解析】(Ⅰ)由正弦定理可得 2sinAcosB=sinA,故可得 cosB= ,又0<B<π,可得B= . (Ⅱ)由正弦定理 求得 b= = ,由三角形内角和公式求得 C= ,可得sinC 的值,由此求得S= 的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网