题目内容
【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是________.
【答案】3
【解析】
由=2可得点A,B的坐标之间的关系,再用点A,B的坐标表示直线的方程,进而可求直线AB与x轴的交点坐标。将△ABO分割成△ACO与△CBO两个小三角形,进而用A,B的坐标表示△ABO与△AFO面积的和,再结合点A,B的坐标之间的关系化简,进而利用基本不等式即可求解。
如图,可设A(m2,m),B(n2,n),其中m>0,n<0,则=(m2,m),=(n2,n),=m2n2+mn=2,解得mn=1(舍)或mn=-2.
∴lAB:(m2-n2)(y-n)=(m-n)(x-n2),即(m+n)(y-n)=x-n2,令y=0,解得x=-mn=2,∴C(2,0).
S△AOB=S△AOC+S△BOC=×2×m+×2×(-n)=m-n,S△AOF=××m=m,则S△AOB+S△AOF=m-n+m=m-n=m+≥,当且仅当,即m=时等号成立.故△ABO与△AFO面积之和的最小值为3.
练习册系列答案
相关题目
【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:
性别 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
附:的观测值
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?