题目内容
【题目】指出下列各组集合之间的关系:
(1);
(2);
(3);
(4),或;
(5),.
【答案】(1);(2);(3);(4);(5).
【解析】
(1)中集合用不等式表示,可以根据范围直接判断; (2)根据集合表示数集的意义进行判断;
(3)解集合中方程得到集合,再根据集合中分别为奇数、偶数得到集合B进行判断;(4)可以根据集合元素的特征或者集合的几何意义判断;
(5)将中x关于的关系式,改写成中的形式再进行判断.
(1)集合B中的元素都在集合A中,但集合A中有些元素(比如0,)不在集合B中,故.
(2)∵A是偶数集,B是4的倍数集,∴.
(3).
在B中,当n为奇数时,,
当n为偶数时,,
∴,∴.
(4(方法一)由得或;
由或得,从而.
(方法二)集合A中的元素是平面直角坐标系中第一、三象限内的点,集合B中的元素也是平面直角坐标系中第一、三象限内的点,
从而.
(5)对于任意,有.
∵,∴,
∴.
由子集的定义知,.
设,此时,解得.
∵在时无解,
∴.
综上所述,.
练习册系列答案
相关题目