题目内容
【题目】若实数满足,则称比接近
(1)若4比接近0,求的取值范围;
(2)对于任意的两个不等正数,求证:比接近;
(3)若对于任意的非零实数,实数比接近,求的取值范围
【答案】(1);(2)证明见解析;(3)
【解析】
(1)由题意得:|x2﹣3x|>4,则x2﹣3x>4或x2﹣3x<﹣4,由此求得x的范围.
(2)根据,且,化简||﹣|a+b﹣2|的结果大于零,可得a+b比接近.
(3)由题意对于x∈R,x≠0恒成立,分类讨论求得|x1|的最小值,可得|a+1|的范围,从而求得a的范围.
解:(1)由题意得:|x2﹣3x|>4,则x2﹣3x>4或x2﹣3x<﹣4,
由x2﹣3x>4,求得x>4或x<﹣1;由x2﹣3x<﹣4,求得x无解.
所以x取值范围为(﹣∞,﹣1)∪(4,+∞).
(2)因为a,b>0且a≠b,所以,且,
所以
,
则,
即a+b比接近.
(3)由题意:对于x∈R,x≠0恒成立,
当x>0时,,当x=2时等号成立,
当x<0时,则﹣x>0,,当x=﹣2时等号成立,所以,则,
综上.
故由|a+1|<3,求得﹣4<a<2,即a取值范围为(﹣4,2).
练习册系列答案
相关题目