题目内容

(08年安徽信息交流)(本小题满分14分)已知两定点A(,0),B(3,0),动圆M与直线AB相切于点N.且=4,现分别过点A、B作动圆M的切线(异于直线AB),两切线相交于点P.

(1)求动点P的轨迹方程;

(2)若直线截动点P的轨迹所得的弦长为5,求m的值;

(3)设过轨迹上的点P的直线与两直线分别交于点,且点分有向线段所成的比为>0),当时,求的最小值与最大值。

解析:(1)由题设及平面几何知识得:,

∵动点P的轨迹是以A、B为交点的双曲线右支,

故所求P点的轨迹方程为:  (4分)

(2)易知 直线恒过双曲线焦点B(3,0)

设该直线与双曲线右支相交于

由双曲线第二定义知,

,则

,从而易知,仅当时,满足

故所求  (8分)

(3)设,且p分有向线段所成的比为

又点在双曲线上,∴

化简得:

 

                               (11分)

上单减,在上单增,

,∴上单减,在上单增,∴

 ,∴

故所求的最小值为9,最大值为。   (14分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网