题目内容
【题目】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6, 0.5,0.5,0.4,各人是否使用设备相互独立,
(1)求同一工作日至少3人需使用设备的概率;
(2)实验室计划购买k台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.
【答案】(1)0.31 (2)3
【解析】
试题(1)至少3人需使用设备分为恰好有3人使用的设备和4个人使用设备.这两个是事件是互斥事件,首先利用独立事件的概率公式分别求出恰好有3人使用的设备和4个人使用设备的概率,最后相加即可.
利用独立事件的概率公式和互斥事件的概率公式计算出同一工作日4人需使用设备的概率.然后结合(1)的结论即可得出结论.
试题解析:记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.
B表示事件:甲需使用设备.
C表示事件:丁需使用设备.
D表示事件:同一工作日至少3人需使用设备.
E表示事件:同一工作日4人需使用设备.
F表示事件:同一工作日需使用设备的人数大于k.
(1)D=A1·B·C+A2·B+A2··C
P(B)=0.6,P(C)=0.4,P(Ai)=.
所以P(D)=P(A1·B·C+A2·B+A2··C)= P(A1·B·C)+P(A2·B)+P(A2··C)
= P(A1P)·P(B)·P(C)+P(A2)·P(B)+P(A2)·p()·p(C)=0.31.
(2)由(1)知,若k=3,则P(F)==0.31>0.1.
又E=B·C·A2,P(E)=P(B·C·A2)= P(B)·P(C)·P(A2)=0.06;
若k=4,则P(F)=0.06<0.1.
所以k的最小值为3.
【题目】为比较注射两种药物产生的皮肤疱疹的面积,选200只家兔作试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物,另一组注射药物.表1和表2所示的分别是注射药物和药物后皮肤疱疹面积的频数分布(疱疹面积单位: )
表1
疱疹面积 | ||||
频数 | 30 | 40 | 20 | 10 |
表2
疱疹面积 | |||||
频数 | 10 | 25 | 20 | 30 | 15 |
(1)完成图20-3和图20-4所示的分别注射药物后皮肤疱疹面积的频率分布直方图,并求注射药物后疱疹面积的中位数
(2)完成下表所示的列联表,并回答能否有99.9%的把握认为注射药物后的疱疹面积与注射药物的疱疹面积有差异.(的值精确到0.01)
疱疹面积小于 | 疱疹面积不小于 | 合计 | |
注射药物A | ______ | ______ | |
注射药物B | ______ | ______ | |
合计 |
附:.
P() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.811 | 5.021 | 6.635 | 10.828 |